

May 2022

Santa Clara, CA

2022

OPENREFACTORY, INC. | [Santa Clara, CA]

Intelligent Code
Repair (iCR)
for Python
Protecting From The Notorious
Python Bugs

OpenRefactory Leadership Team

OpenRefactory, Inc. | Santa Clara, CA, USA

Executive Summary

OpenRefactory is advancing software development by providing a sophisticated service called Intelligent
Code Repair (iCR) to help programmers develop higher quality, more secure software in less time.

iCR for Python brings to the Python world the following three benefits common to all iCR products: (1) iCR
detects bugs that other tools miss, (2) iCR does that with dramatically low false positives and (3) iCR
synthesizes fixes automatically for a majority of the bugs that have been detected.

This white paper presents case studies about how these benefits protect the software development teams
and unleashes them to operate at premium release velocity without compromising their security posture.

1. Problem With Detection Tools
Software developers make a lot of mistakes when
they write code. Coralogix , the data logging 1

company, studied developer productivity issues
and found that on average a developer creates 70
bugs per 1,000 lines of code. Fifteen bugs per
1,000 lines of code find their way to the
customers. 75% of a developer’s time is spent on
debugging.

Most of the budget in software development is
spent on debugging. When debugging takes a lot
fo time, deliveries are delayed.

There are automated tools to assist the bug
detection process. But they are insufficient
because the static application security testing
tools generate a lot of false warnings. Typical bug
detection tools generate a rate of over 70% false
positives. For every 10 bugs detected by these
tools, more than 7 are false warnings. Developers
have to waste a lot of time triaging the bugs and
finding which bugs to fix in the first place.

Typical bug detection tools also miss critical bugs.
The root cause of the Heartbleed bug in the
OpenSSL library, written in C, was in the codebase
for over two years before it was exploited. The
root cause of the Log4Shell vulnerability in Log4J
library’s Java code had been in the codebase for
over eight years.

Developers do not set out to write buggy code,
and what's more they hate fixing bugs. The
compressed time frame under which they work is
to blame. What is needed is a tool that enables
developers to work as quickly and error free as
possible, a tool that truly solves the problem of
bug fixing. This would lead to two major positive
outcomes: happier developers (key to retention in
the face of fierce competition for talent) and a
better product (more and better features; bug
free).

 Coralogix Blog: “This is what your developers are doing 75% of the time, and this is the cost you pay”; 1

 https://coralogix.com/blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/

Contact us at: info@openrefactory.com www.openrefactory.com1

https://coralogix.com/blog/this-is-what-your-developers-are-doing-75-of-the-time-and-this-is-the-cost-you-pay/
mailto:info@openrefactory.com

2. Intelligent Code Repair (iCR)
OpenRefactory’s mission is to build a world of
software we can trust. OpenRefactory is improving
upon the way developers deal with bugs in
software. OpenRefactory’s Intelligent Code Repair
(iCR) has three key features.

1. iCR detects bugs that other tools miss;

2. iCR detects bugs with 100X fewer false
warnings;

3. iCR synthesizes a fix that can be readily
applied for almost half of all detected
problems.

iCR allows software developers to operate at
premium release velocity without compromising
the quality.

The core of the iCR service is the Analysis Engine,
which incorporates a broad suite of behavior-
enhancing refactorings. These are referred to as
Fixers.

Each fixer addresses a specific class of security,
reliability, or compliance problem:

1. Security Fixers. Each of these fixers targets a
specific security problem to prevent attackers
from taking control of the system, stealing data,
and/or crashing applications. These will target
the most important problems in each
programming language, as described by the
lists created by OWASP, SANS, etc. For
example, a fixer for Python programs addresses
cross-site scripting (XSS) issues that may allow
an attacker to access or steal information.

2. Reliability Fixers. Each of these fixers targets a
problem that causes an application to crash or
slow down or hampers the user experience. For
example, a fixer for Java programs addresses a

resource leak problem that may allow an
attacker to unexpectedly crash the application.

3. Compliance Fixers. Each of these fixers targets
a compliance issue. Standards organizations
such as CERT define guidelines to eliminate
insecure coding practices. Some of these may
be structural issues that involve code smell,
while others may be associated with exploitable
vulnerabilities. Compliance fixers address these
issues to make the code more robust. For
example, a fixer for Python programs may check
whether the exception thrown in the Python
code is done in a canonical way, e.g., user
defined Exception classes should not be
derived from BaseException, KeyboardInterrupt,
SystemExit, or GeneratorExit classes.

3. iCR for Python
OpenRefactory’s iCR for Python v2.0 was released
during PyCon at Salt Lake City on April/May 2022.

iCR for Python v2.0 is a major version upgrade. It
supports 68 fixers.

iCR can be operated either in a single-scan
transactional mode or integrated into a regular CI/
CD process. In either case, the sequence of
operations is much the same.

One of the key principles in using iCR is the
preservation of the privacy of the developer’s
source code. Most software companies would balk
at allowing some kind of external access to their
source code in order for it to be analyzed.
Therefore, iCR is deployed on the developer’s site
and installed into safe Docker containers.

The diagram shows that iCR for Python has three
key components.

iCR Navigator is the main component that the
user interacts with. The Analysis Engine analyzes

Contact us at: info@openrefactory.com www.openrefactory.com2

mailto:info@openrefactory.com

code and generates fixes. The Reviewer helps the
user review, approve/reject and apply the fixes.

Using the Navigator, a user directs the Analysis
Engine to scan the source code of an application
and initiates the Reviewer to examine the
generated fixes and approve/reject them.

The source code to be analyzed can come from a
version control system (VCS) available on the
cloud or as an in-house service. All three of the
major version control systems, namely, GitHub,
GitLab, and Bitbucket are supported. Also source
code available on the local file system may be
scanned.

The most common deployment of iCR integrates
with the Continuous Integration/ Continuous
Deployment (CI/CD) pipeline. Integrating into the
CI/CD workflow empowers the operations team to
ensure that the code is routinely checked for
errors and that developers are given the
opportunity to review and correct those errors.

iCR may be integrated into the CI/CD workflows
provided by Jenkins, GitHub and GitLab, three of
the most popular workflow frameworks available.
For example, iCR is integrated with Jenkins as a
plugin, i.e., a script that inserted anywhere in the
workflow.

Other custom workflows can also be supported on
an as needed basis.

4. Finding Hard-To-Detect Bugs
iCR for Java and C have demonstrated the
capability to report hard-to-find bugs. For example,
iCR is the only tool able to detect the LDAP
injection issue in the Log4J v2.0 library, which
was the root cause behind the Log4Shell
vulnerability.

A similar success story for a Python bug detection
happened in May 2022.

On May 2022, a Reddit user posted that he
spotted a new update to the ctx library in GitHub.
According to the GitHub repo, the library is a
“minimal but opinionated dict/object combo (like
Bunch)”. The ctx module provides the ctx class
which is a subclass of the Python ‘dict’ object. Like
Bunch, the library allows dictionary search through
attribute access notation. The last update for the
library was made in December of 2014. But
several versions of ctx had been uploaded in the
past few days of the Reddit post.

The GitHub repo of the author of the ctx
repository showed that no such updates were
made. The package versions also looked
suspicious. One was v0.1.2 which was the same
version as the one that had been there since 2014.
Then there had been two updates: one with
version number 0.2.2 and another with version
number 0.2.6. The version numbering appeared to
be arbitrary and inconsistent.

What happened was a simple social engineering
attack. The perpetrator noticed that the original
maintainer’s domain name had expired. So, he
registered the domain name on May 14, 2022.
Then he created an email to initiate a password
reset email in GitHub. This was trivial. At that point,
the perpetrator could introduce the new package
on GitHub.

Contact us at: info@openrefactory.com www.openrefactory.com3

mailto:info@openrefactory.com

The new package (shown above) had a few lines
of code that appeared suspicious. The code is
packing all of the environment variables in a
string, encoding it, and forwarding the encoded
string in a GET message to a malicious website.

Five Python bug detection tools were used to see
if they would detect the issue. This includes open
source tools such as flake8, bandit, pysa, and a
couple of commercially available tools. None of
them detected the bug, but iCR did.

Contact us at: info@openrefactory.com www.openrefactory.com4

mailto:info@openrefactory.com

For another case study, iCR was run along with
two commercial SAST tools and one open source
SAST tool (bandit) on the same Python application.

The application that was chosen for
this case study was the Django

framework v4.0.3. Django is the
most popular Python-based web framework
developed as an open source application. It is a
popular project with 63,700 stars on GitHub,
27,000 forks and 2,208 project contributors. It has
2128 Python files containing 438 KLoCs.

iCR identified 131 bugs, out of which there were 34
security bugs. The two commercial tools found 2
severe security bugs and 11 severe security bugs
respectively. For the second tool, all 11 bugs were
false positives. For the first tool, both bugs were
also detected by iCR.

The open source tool found 2 severe security
bugs with one false positive. iCR also detected
that bug.

The critical bugs that were commonly detected
were weak cryptography issues.

5. 300X Fewer False Positives
The more important result from the Django case
study mentioned in the previous section is the
amount of false warnings reported.

The diagram below compares the false warnings
generated by the two commercial tools with the
false warnings generated by iCR. iCR generated
15 false warnings out of the 131 bugs identified (11%
FP). In contrast, commercial tool 1 generated 4,931
false warnings out of the 5,524 bugs identified
(89% FP). Commercial tool 2 generated 4,140 false
warnings out of the 4,613 bugs identified (90% FP).

iCR found 328X fewer false warnings than
commercial tool 1 and 276X fewer false warnings
than commercial tool 2.

6. Fixing Bugs Automatically
iCR fixed 68 bugs automatically (52% fix rate). It is
the only SAST tool that is able to synthesize a fix
that can be readily applied to source code.

7. Conclusion
iCR fixes the key problems of current SAST tools. In future, OpenRefactory will improve upon the fix rate
even more. For more info, contact info@openrefactory.com.

Contact us at: info@openrefactory.com www.openrefactory.com5

mailto:info@openrefactory.com
mailto:info@openrefactory.com

	Executive Summary
	Problem With Detection Tools
	Intelligent Code Repair (iCR)
	iCR for Python
	Finding Hard-To-Detect Bugs
	300X Fewer False Positives
	Fixing Bugs Automatically
	Conclusion

